
1

CS 410/510: Advanced
 Programming

Profiling in Haskell

Mark P Jones

Portland State University

What makes a good program?

! "Qualitative factors:
!" Correctness

!" Maintainability, readability,
understandability, portability, flexibility, …

!" Use of appropriate abstractions and idioms

!" …

! "Quantitative factors:
!" Performance, Predictability, …

!" Time, Memory, Disk, Bandwidth, …
2

Understanding Program Behavior:

! " High-level languages abstract away from the
underlying machine

! " This can make it very difficult to understand what
is happening when a program executes

! " Analytic techniques can predict asymptotic trends

! " Hard to model complexities of memory, timing,
stack, cache, disk, buffers, network, latencies,
bandwidth, concurrency, branch prediction, …

3

Profiling Tools:

! " Two broad approaches:
!" Instrumentation

!" Sampling

! " Standard Advice:

!" Focus on writing qualitatively good code first

!" Once that’s working, use profiling tools to
identify performance hot-spots and obtain
quantitatively good code

4

Form Follows Function:

expr, term, atom :: Parser Int

expr = term "+" expr -- return (l+r)

 | term "-" expr -- return (l-r)

 | term

term = atom "*" term -- return (l*r)

 | atom "/" term -- return (l`div`r)

 | atom

atom = "-" atom -- return (negate x)

 | "(" expr ")" -- return n

 | number

5

Form Follows Function:

expr, term, atom :: Parser Int

expr = do l <- term; string "+"; r <- expr; return (l+r)

 ||| do l <- term; string "-"; r <- expr; return (l-r)

 ||| term

term = do l <- atom; string "*"; r <- term; return (l*r)

 ||| do l <- atom; string "/"; r <- term; return (l`div`r)

 ||| atom

atom = do string "-"; x <- atom; return (negate x)

 ||| do string "("; n <- expr; string ")"; return n

 ||| number

6

Parsing Examples:

Parsing> parse expr "1+2"

[3]

Parsing> parse expr "(1+2) * 3"

[]

Parsing> parse expr "(1+2)*3"

[9]

Parsing> parse expr "((1+2)*3)+1"

[10]

Parsing> parse expr "(((1+2)*3)+1)*8"

[80]

Parsing> parse expr "((((1+2)*3)+1)*8)"

[80]

Parsing>

7

Execution Statistics in Hugs:

! " Mechanisms:
!" Enable the collection of execution statistics

using :set +s

!" Turn on messages when garbage collection
occurs using :set +g

!" Change total heap size (when loading Hugs)
using hugs –hSize

! " Measures:

!" Cells: a chunk of memory

!" Reductions: a single rewrite step
8

Collecting Statistics:

Parsing> :set +s

Parsing> 1

1

(22 reductions, 32 cells)

Parsing> 2

2

(22 reductions, 32 cells)

Parsing> 3

3

(22 reductions, 32 cells)

Parsing> 1+2

3

(26 reductions, 36 cells)

Parsing> length "hello"

5

(56 reductions, 75 cells)

Parsing> length "world"

5

(56 reductions, 75 cells)

Parsing> id 1

1

(22 reductions, 32 cells)

Parsing> (\x -> x) 1

1

(23 reductions, 32 cells)

Parsing>

9

Observing Garbage Collection:

Parsing> :set

TOGGLES: groups begin with +/- to turn options on/off resp.

s Print no. reductions/cells after eval

…

OTHER OPTIONS: (leading + or - makes no difference)

hnum Set heap size (cannot be changed within Hugs)

…

Current settings: +squR -tgl.QwkIT -h1000000 -p"%s> " -r$$ -c40

…

Parsing> length [1..200000]

{{Gc:979946}}{{Gc:979945}}{{Gc:979947}}{{Gc:979946}}{{Gc:
979947}}200000

(4200043 reductions, 5598039 cells, 5 garbage collections)

{{Gc:979983}}Parsing>

10

Observing Garbage Collection:

$ hugs -h100000 +gs

…

Hugs> length [1..200000]

{{Gc:86831}}{{Gc:86830}}{{Gc:86832}}{{Gc:86833}}{{Gc:86828}}…
{{Gc:86828}}{{Gc:86829}}{{Gc:86828}}{{Gc:86828}}200000

(4200054 reductions, 5598125 cells, 64 garbage collections)

{{Gc:86866}}Hugs> :q

$ hugs -h8M +gs

…

Hugs> length [1..200000]

200000

(4200054 reductions, 5598125 cells)

{{Gc:7986866}}Hugs>:q

11

Observing Garbage Collection:

$ hugs -h26378

...

ERROR "/Users/user/local/lib/hugs/packages/hugsbase/Hugs/Prelude.hs"
- Garbage collection fails to reclaim sufficient space

FATAL ERROR: Unable to load Prelude

$ hugs -h26379

...

Hugs> :set +sg

Hugs> length [1..200000]

{{Gc:13208}}{{Gc:13213}}{{Gc:13208}}{{Gc:13205}}{{Gc:13209}}...
{{Gc:13203}}{{Gc:13209}}200000

(4200054 reductions, 5598125 cells, 424 garbage collections)

{{Gc:13245}}Hugs>

12

Observations:

! " Note that: 100000 – 86866 = 13134 = 26379 – 13245

! " So we can conclude that Hugs:
!" uses 13134 cells for internal state

!" needs at least 26379 cells to load

! " Possible profile of memory usage during startup:

13

26,379

13134

Heap size, Residency, Allocation:

14

! " Heap size measures maximum capacity

! " Residency measures amount of memory
that is actually in use at any given time

! " Haskell programs allocate constantly (and,
simultaneously, create garbage)

! " Total allocation may exceed heap size

Back to Parsing:

Parentheses seem to be part of the problem, so let’s stress
test:

addParens n s = if n==0

 then s

 else "(" ++ addParens (n-1) s ++ ")”

Parsing> [addParens n "1" | n <-[0..5]]

["1","(1)","((1))","(((1)))","((((1))))","(((((1)))))"]

Parsing>

15

Parsing> :set +s

Parsing> parse expr (addParens 1 "1")

[1]

(15060 reductions, 20628 cells)

Parsing> parse expr (addParens 2 "1")

[1]

(137062 reductions, 187767 cells)

Parsing> parse expr (addParens 3 "1")

[1]

(1234954 reductions, 1691736 cells, 1 garbage collection)

Parsing> parse expr (addParens 4 "1")

[1]

(11115840 reductions, 15227127 cells, 15 garbage collections)

Parsing> parse expr (addParens 5 "1")

[1]

(100043656 reductions, 137045268 cells, 139 garbage collections)

Parsing>
16

Rapid increases in
reductions and cell

counts

$ hugs -h26379 +sg

Hugs> :l altParsing.lhs

Parsing> :gc

Garbage collection recovered 6462 cells

Parsing> parse expr "1"

[1]

(1367 reductions, 1881 cells)

{{Gc:6304}}Parsing> parse expr (addParens 1 "1")

{{Gc:6218}}{{Gc:6213}}{{Gc:6217}}[1]

(15073 reductions, 20665 cells, 3 garbage collections)

{{Gc:6281}}Parsing> parse expr (addParens 5 "1")

{{Gc:6044}}{{Gc:6072}}{{Gc:6066}}{{Gc:6076}}{{Gc:6072}}{{Gc:
6081}}{{Gc:6063}}{{Gc:6085}}{{Gc:6068}}{{Gc:6090}}{{Gc:6062}}...
{{Gc:6113}}{{Gc:6078}}{{Gc^C:6048}}{Interrupted!}

(16505831 reductions, 22610720 cells, 3713 garbage collections)

{{Gc:6048}}Parsing>

17

Memory is not the
problem here:

Analysis (1):

18

parens reductions cells

1 15060 20628

2 137062 187767

3 1234954 1691736

4 11115840 15227127

5 100043656 137045268

Analysis (2):

19

parens reductions cells log reds log cells

1 15060 20628 4.177824972 4.314457123

2 137062 187767 5.136917065 5.273619267

3 1234954 1691736 6.091650781 6.228332591

4 11115840 15227127 7.045942287 7.18261797

5 100043656 137045268 8.000189554 8.136864044

Why Exponential Behavior?

expr, term, atom :: Parser Int

expr = do l <- term; string "+"; r <- expr; return (l+r)

 ||| do l <- term; string "-"; r <- expr; return (l-r)

 ||| term

term = do l <- atom; string "*"; r <- term; return (l*r)

 ||| do l <- atom; string "/"; r <- term; return (l`div`r)

 ||| atom

atom = do string "-"; x <- atom; return (negate x)

 ||| do string "("; n <- expr; string ")"; return n

 ||| number

20

Recall this grammar …

Matching "1" as an term:

! " First, we match it as a term … and then find that it’s not
followed by a "+"

do l <- term; string "+"; r <- expr; return (l+r)

! " So then we match it again as a term … and find that it’s
not followed by a "-"

do l <- term; string "-"; r <- expr; return (l-r)

! " Then, finally we can match it as a term without any
following characters

 term

! " So we will match "1" as a term three times before we
succeed … or as an atom nine times … or …

21

Refactoring the Grammar:

expr, term, atom :: Parser Int

expr = do l <- term

 do string "+"; r <- expr; return (l+r)

 ||| do string "-"; r <- expr; return (l-r)

 ||| return l

term = do l <- atom

 do string "*"; r <- term; return (l*r)

 ||| do string "/"; r <- term; return (l`div`r)

 ||| return l

atom = … as before …

22

A Step Forward:

Parsing> :set +s

Parsing> parse expr (addParens 10 "1")

[1]

(3624 reductions, 6091 cells)

Parsing> parse expr (addParens 100 "1")

[1]

(42414 reductions, 83491 cells)

Parsing> parse expr (addParens 1000 "1")

[1]

(1321314 reductions, 3530491 cells, 3 garbage collections)

Parsing> parse expr (addParens 10000 "1")

(3899701 reductions, 11445375 cells, 12 garbage collections)

ERROR - Control stack overflow

Parsing> 23

Profiling with GHC:

! " GHC provides a much broader and more powerful
range of profiling tools than Hugs

! " We have to identify a main program:

module Main where

main = print (parse expr "(((((1)))))")

! " Compiling: ghc --make altParsing.lhs

! " Running: ./altParsing +RTS –sstderr

! " Still slow!
24

$./altParsing +RTS –sstderr

[1]

848,494,732 bytes allocated in the heap

 1,506,284 bytes copied during GC (scavenged)

 0 bytes copied during GC (not scavenged)

 24,576 bytes maximum residency (1 sample(s))

 1619 collections in generation 0 (0.02s)

 1 collections in generation 1 (0.00s)

 1 Mb total memory in use

 INIT time 0.00s (0.00s elapsed)

 MUT time 1.01s (1.03s elapsed)

 GC time 0.02s (0.02s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 1.03s (1.06s elapsed)

 %GC time 1.7% (2.3% elapsed)

 Alloc rate 836,673,373 bytes per MUT second

 Productivity 98.2% of total user, 96.0% of total elapsed

$

25

Profiling Options:

! " For more serious work, compile with the –
prof flag

 ghc --make -prof altParsing.lhs

! " Opens up possibilities for:

!" Time and allocation profiling

!" Memory profiling

!" Coverage Profiling

!" …

! " Profiling code has overheads; not for
production use

26

Cost Center Profiling:

! " A technique for distributing costs during program
execution

! " Programmer creates “cost centers”:

!" by hand {-# SCC “name” #-}

!" for all top-level functions: -auto-all

! " Program maintains runtime stack of cost centers

! " RTS samples behavior at regular intervals

! " Produce a summary report of statistics at the end
of execution

27

In Practice:

$ ghc --make -prof -auto-all altParsing.lhs

$./altParsing +RTS -p

[1]

$ ls

altParsing* altParsing.hi altParsing.lhs

altParsing.o altParsing.prof

$

28

 Time and Allocation Profiling Report (Final)

 altParsing +RTS -p -RTS

 total time = 0.54 secs (27 ticks @ 20 ms)

 total alloc = 803,275,236 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

CAF Main 100.0 100.0

 individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 1 0 0.0 0.0 100.0 100.0

 CAF Main 154 19 100.0 100.0 100.0 100.0

 CAF GHC.Handle 92 4 0.0 0.0 0.0 0.0

29

Alas, not a very insightful report,
in this case …

Heap Profiling:

! " A technique for measuring heap usage during
program execution

! " Compile code for profiling and run with argument
+RTS option where option is:
!" -hc by function

!" -hm by module

!" -hy by type

!" -hb by thunk behavior

! " Generates output.hp text file

! " Produce a graphical version using hp2ps utility
30

In Practice:

$ ghc --make –prof altParsing.lhs

$./altParsing +RTS -hc

[1]

$ ls

altParsing* altParsing.hi altParsing.lhs

altParsing.o altParsing.hp

$ hp2ps –c altParsing.hp

$ open altParsing.ps

$
31

altParsing +RTS -hm 3,652 bytes x seconds Thu Mar 5 15:46 2009

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

b
y
te

s

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

GHC.Handle

Main

altParsing +RTS -hc 3,413 bytes x seconds Thu Mar 5 15:36 2009

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

b
y
te

s

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

(92)GHC.Handle.CAF

(154)Main.CAF

altParsing +RTS -hy 3,882 bytes x seconds Thu Mar 5 15:37 2009

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

b
y
te

s

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

IO

Handle

Int

MUT_VAR_CLEAN

MVAR

WEAK

:TMonad

Buffer

->Parser

Handle__

->*

Parser

stg_ap_2_upd_info

PAP

[]

BLACKHOLE

->[]

altParsing +RTS -hb 9,890 bytes x seconds Thu Mar 5 15:51 2009

seconds0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

b
y
te

s

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

INHERENT_USE

VOID

LAG

USE

Biographical Profiling (-hb):

! " LAG phase: object created but not yet used

! " USE: objects is in use

! " DRAG: object has been used for the last time, but
is still referenced

! " VOID: an object is never used

36

Coverage Profiling:

! " Used to determine which parts of a program have
been exercised during any given run

! " Works by instrumenting code to get exact results

! " Provides two kinds of coverage:
!" Source coverage

"" Yellow – not executed

!" Boolean guard coverage
"" Green always true

"" Red always false

37

In Practice:

$ ghc --make –fhpc altParsing.lhs

$./altParsing

[1]

$ ls

altParsing* altParsing.hi altParsing.lhs

altParsing.o altParsing.tix

$

38

In Practice:

$ hpc report altParsing

33% expressions used (138/409)

 0% boolean coverage (0/1)

 100% guards (0/0)

 0% 'if' conditions (0/1), 1 unevaluated

 100% qualifiers (0/0)

 66% alternatives used (4/6)

 0% local declarations used (0/6)

 54% top-level declarations used (18/33)

$

39

In Practice:

$ hpc markup altParsing

Writing: Main.hs.html

Writing: hpc_index.html

Writing: hpc_index_fun.html

Writing: hpc_index_alt.html

Writing: hpc_index_exp.html

$ open Main.hs.html

$ open hpc_index.html

$

40

Coverage of altParser:

41

Summary:

! " Profiling tools help us to understand the
complex operational behavior of code

! " Expert use of profiling tools requires
significant use and experience

! " But, even with limited experience, it is still
possible to gain some interesting into what
our programs really do!

42

